Standard Deviation

Concepts

1. The **variance** of a random variable is defined as $E[(X - \mu)^2]$ and there is a shortcut formula that we can use to define it as $E[X^2] - \mu^2$. For continuous random variables, we replace summation with

$$\sigma^{2} = E[X^{2}] - \mu^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}.$$

Example

2. Let $f(x) = e \cdot e^x$ for $x \leq -1$ and 0 otherwise. Find the standard deviation of this distribution.

Problems

- 3. True False The standard deviation always exists.
- 4. True False Sometimes, we take the standard deviation to be the negative square root of the variance.
- 5. True False The variance is always nonnegative.
- 6. True False If the mean doesn't exist, then the standard deviation doesn't exist.
- 7. True False If the mean exists, then the standard deviation exists.
- 8. Let f(x) be 2/3x from $1 \le x \le 2$ and 0 everywhere else. Find the standard deviation of this distribution.
- 9. Let f(x) be $-4/x^5$ for $x \leq -1$ and 0 everywhere else. Find the standard deviation of this distribution.
- 10. Let f(x) be the uniform distribution on $0 \le x \le 10$ and 0 everywhere else. Find the standard deviation of this distribution.